ADL500

INVERTER FOR ELEVATOR

Hay

$R 241$
 8

 - 0 EBE1 Lm
$\frac{1}{0} \sqrt{\frac{7}{N}}$

Over fifty years of experience, an organisation highly focused on the customer's needs and constant technological innovation make Gefran a benchmark in the design and production of sensors and components for industrial process automation and control.

Expertise, flexibility and process quality are the factors that distinguish Gefran in the production of integrated tools and systems for specific applications in various industrial fields, with consolidated know-how in the plastics, mobile hydraulics,
heating and lift sectors.
Technology, innovation and versatility represent the catalogue's added value in addition to the ability to create specific application solutions in association with the world's leading machine manufacturers.

GEFRAN

In the last decade the elevators have been under a tremendous evolution from the technology standpoint like never before. Safety, comfort travel, efficiency, reliability, remote access combined with the use of smartphones and tablets are the major changes that we daily experience versus the old generation systems.

Gefran has developed the new ADL500 inverter series specific for elevators EN81-20 / EN81-50 certified.

The series is composed of three lines ADL550, ADL530 and ADL510 designed to answer the requirements of high rise, medium rise and low rise buildings, without to forget the big market of the modernization.

- ADL510: designed to be simple and easy to install in case of asynchronous motors typical of low-rise buildings or modernization both in open and close loop.
- ADL530: designed to control both geared and gearless motors integrated On-board Universal encoder interface (EnDat, SinCos, BiSS and Digital Incremental) and integrated CAN port for communication by CAN Open 301 and CAN Open Lift 417 are ready to use.
- ADL550: with the advanced safety functions, Safe Torque Off SIL3 (Phase contactor-less), Safe Brake Test (SBT) to check the motor brakes effectiveness, and the Electronic Brake Control (EBC) SIL3 that replaces the electromechanical brakes contactors by internal electronics (Brake contactor-less). Elevator Positioning Control (EPC) that allows to have a better comfort with the direct approach and precise floor levelling even for very high demanding elevators. Stand-by management, where the power part of the drive is shut off to eliminate the energy consumption during the idle state.
- ADL550-ICS, the Integrated Control System creating one single environment between the inverter and the control card, optimizing the commissioning and the start-up of the electronic parts of the elevator.

APPLICATIONS

GUIDE TO SELECTION

beyond technology

FIELDS OF APPLICATION

TRAFFIC PROFILES

Although an application may be defined initially in terms of floor number and car speed, the various traffic profiles are another essential factor for its better definition.
Buildings used for offices, apartments, businesses or public services require an adequate analysis of their traffic profile in order to choose the best system and all of its components.
The number of people, direction of movement, and specific time bands determine different traffic profiles, characterized by:

- people entering or leaving the loading lobby;
- inter-floor traffic;
- traffic on specific floors;
- peak hours;
- average car load.

Each type of building will have different traffic profiles to be managed by the lift system.

. OFFICE BUILDINGS

These have two peak periods: up-peak in the morning and down-peak in the evening, with inter-floor traffic limited to specific floors (restaurants, car parks, and common areas).
The system must be designed to reduce waiting times for people entering the loading lobby in the morning, to efficiently receive calls from people leaving in the evening, and to manage full loads at peak hours.
Homing functions are typically used, in which the car automatically goes to the floor in specific time bands.
Functions such as door pre-opening and express arrival (available in the ADL500 family) reduce waiting times and increase the traffic handled.
Functions such as pre-torque increase comfort regardless of the number of people in the car.

. HOSPITALS

Peak hours are during visiting hours (if concentrated in specific time bands).
Hospitals have heavy inter-floor traffic due to patients moving from one ward to another and to movements of personnel.
Hospitals can greatly reduce energy costs by using regenerative solutions, even in Low and Mid Rise applications.
Regardless of height, comfort and landing speed are critical for handling emergencies and for moving people with physical limitations.
Functions such as precise landing at the floor and comfort when running and starting/arriving are requirements that cannot be entrusted to general purpose drives.
The ADL500, designed for civil lift applications, is the best answer.
The $24 \mathrm{~h} \times 365$ days remote monitoring open the possibility to the predictive maintenance reducing the down service.

. RESIDENTIAL BUILDINGS

Residential buildings have no peak traffic hours, although traffic in the morning and in the evening is higher than the daily average. There is practically no inter-floor traffic.
Because of the progressively aging population, system down-time must be reduced to an absolute minimum, and all components must be selected on the basis of quality and reliability.
Thanks to the stand-by management it is possible to save energy limiting the power consumption to a few watts in not operative elevator time bands.
The noise expecially in the night can be dramaticaly reduced by the contactorless configuration.
beyond technology

INTEGRATED SAFETV FUNCTIONS

Since years Gefran aims to increase more and more the level of safety of the inverters, helping the operators to reduce installation and maintenance costs avoiding the use of external components.
The ADL550 series integrates multiple safety features that are requested by the current standard EN81-20/EN81-50.

UCM (UNINTENDED CAR MOVEMENT)

As reported in the paragraph 5.6 .7 in the EN81-20, it is requested the immediate stop of the car in case of movement with doors open. To answer this requirement, Gefran introduced the continuous independent monitoring of the brakes feedback.

STO (SAFE TORQUE OFF) SIL3

Based on the paragraph 5.9.2.5 in the EN81-20, in order to cut the motor power supply that cause the motor rotation it is requested to use two independet contactors that increase the cost of the installation and the noise of the switch. Gefran integrated the STO-SIL3 certified safety circuit that allows to avoid the installation of external contactors between the motor and the inverter.

SBT (SAFE BRAKE TEST)

Gefran has developed a specific function to test the holding torque of the motor brakes (operational or holding brake) in motor with encoder, both with the two brakes active or for each brake independently. If, during the test, the rotor moves beyond an acceptable range an alarm is raised.

EBC5OO - ELECTRONIC BRAKE CONTROL SIL3

The EBC500 (Electronic Brake Control) is an external optional module designed by GEFRAN for the new inverter family ADL550/ ADL550-ICS, that enable the safe control and monitoring of the motor's brakes. The traditional electro-mechanical brakes contactors, subject to wear and failures are replaced by internal electronics featuring longest lifetime (ZERO CONTACTORS SOLUTION) reducing the maintenace cost and increasing the durability of the service life of the brakes.

CONNECTIVITY

WI-FI CONNECTION AND CLOUD SERVICE: THE NEW ERA OF ACCESSIBILITY

The ADL500 series introduce operators in a new era of inverter management. Together with the traditional approach by cabled keypad or cabled PC, that oblige the operators to be on-site; Gefran introduces a new generation of inverter management based on the modern telecommunication technology.
Thanks to GF_Liftouch, the web application designed by Gefran, operations like the start-up, tuning, monitoring and the alarm check, can be easily achieved by mobile phone or tablet with a simple WI-FI connection, or can be fulfilled from remote, thanks to the Gefran Portal, the cloud infrastructure that allows customers to create their own Elevator Management System.

GF_Liftouch WebApp connection
> Direct Wi-Fi connection using Wi-Fi Drive link optional module (1).
> Direct connection or through LAN using the Modbus TCP protocol (2).
> Remote connection with drive connected to a gateway with SIM card and data connection. By logging onto the Gefran portal, it is possible to monitor and manage the in-field drives and access them directly (3).

GF_Drivelabs Configuration tool
> Direct connection or through LAN using the Modbus TCP protocol (2).
beyond technology

ADL500•GENERAL CHARACTERISTICS

EXPANSION CARDS

EXTRA ITO CONFIGURATION
All in one board with：
＞ 4 Digital Inputs
＞ 2 Relay Output

OR

DCP3 and DCP4 Protocols
DCP3 for use in EFC（Elevator Floor Control）mode．
DCP4 for use in EPC（Elevator Positio－ ming Control）mode．

UNIVERSAL INTEGRATED MULTI－ENCODER

Selects the encoder type from the parameter without adding dedicated boards，such as： SinCos，Endat，Dis，Digital Incremental．
以ーム M～～N

「ロOCXDCOT

SAFETY FUNCTIONS

Safety features to prevent accidental motor start
＞SBT Safe Brake Test
＞EBC Electronic Brake Control SIL3 ${ }^{\left({ }^{(}\right)}$
＞STO Contactorless SIL3（Category ALe）．
with external accessory module（in preparation）

ETHERNET PORT

Built－in Ethernet com－ munication with Modbus TCP protocol for direct／ LAN connection to monitor and configure the drive or for remote gateway connection．

CANopen PORT

CANopen 301
CANopen Lift 417 with dedicated SW．

GREEN SOLUTIONS AND FEATURES

＞Regenerative configuration with the AFE200 external modules．
$>$ Reduced consumption thanks to system stand－by management lo－ gic combined with external +24 Vdc power supply．
Hybrid power supply with superca－ pacitors．
Regenerative energy calculation．

USB PORT
 USB

＞Uploading and downloading para－ meters file．
$>$ Motor selection and upload of da－ taplate information from database．
Uploading languages and SW applications on board the drive．
Smart FW update．

Wi－Fi COMMUNICATION

Plug－in for optional Drive Link Wi－ Fi module for wireless communi－ cation via GF＿Liftouch APP．

Modbus $_{\text {tap }}$

CaNopen

MODEL	ADL510	ADL530	ADL550
Control Mode	SSC (Sensorless Scalar Control), Asyn FOC (Field Oriented Control)	SSC (Sensorless Scalar Control), Asyn / Syn FOC (Field Oriented Control)	
Motor Type	Asynchronous	Asynchronous, Synchronous	
Input Voltage (Output Power)	$3 \times 400 \mathrm{VAC}$ ($4-15 \mathrm{~kW}$)	$3 \times 230 \mathrm{VAC}(2-7.5 \mathrm{~kW})$ $3 \times 400 \mathrm{VAC}(4-15 \mathrm{~kW})$ 3×480 VAC ($5-20 \mathrm{~kW}$)	
Speed Accuracy	$\pm 0.01 \%$ rated motor speed		
Analog Inputs	1		
Digital Inputs	$8+1$ Enable		
Digital outputs	4 (relay)		
Fast Freeze Inputs	0	0	2
Overload	183\% $\times 10$ s	183\% x 10 s	183\% $\times 10 \mathrm{~s} / 200 \% \times 2 \mathrm{~s}$
+24VDC external supply	No	No	Yes
PTC input	No	Yes	Yes
Regulation terminals	Removable		
10 extension	No		4DI + 2R0
Max Output Freq.	300 Hz		
EMI Filter	Integrated (in the ADL5x0-...-F version)		
Braking Unit	Integrated		
USB Port	No	Yes	Yes
Wi-Fi Module	No	Optional	Optional
Encoder	TTL/HTL	Universal multi-encoder card integra	ed (TTL/HTL/Endat/Biss/SinCos/SSI)
Emergency operation	Battery powered (48-96VDC) with integrated EMS module, UPS ($1 \times 230 \mathrm{VAC}$)		
Functions	> Wizards for: - drive set-up - start-up - optimization of comfort and performance - troubleshooting > Management of built-in incremen- tal digital encoder with repetition > Multi-speed control (EFC) > Calculation of energy savings in regenerative configuration.	In addition to the functions of the 510: > Universal multi-encoder card integrated > Wireless control through GF_ Liftouch APP for smartphone > USB port for: - import/export parameter file - FW download - drive language selection - setting motor data from DB > CANopen Lift 417 > Datalogger.	In addition to the functions of the 530: > Safety functions $>$ System stand-by management > Optimized management of emergency battery consumption $>$ DCP3 - DCP4 with optional card > Motors with peripheral encoder control. > Position Control - Direct Arrival (EPC)
Communication	Modbus TCP (RJ45 port) via GF_DriveLabs configurator		
Protection level	IP20		
Safety features	No		$\begin{array}{\|l} \hline>\text { Safe torque off SIL3 (Contactorless). } \\ >\text { Safe brake test (SBT) } \\ >\text { Electronic Brake Control SIL3 (with } \\ \text { external module) } \\ \hline \end{array}$
Operating temperature	$40^{\circ} \mathrm{C}$ (without derating) $50^{\circ} \mathrm{C}$ (with derating)		$50^{\circ} \mathrm{C}$ (without derating)
Altitude	Max 2000 m . (up to 1000 m without derating)		
Marks	CE *, cULus, EAC.		
Standards	Climatic conditions: EN 60721-3-3; Electrical safety: EN 61800-5-1, ASME17.5/CSA B44.1, UL840 pollution degree 2; EMC compatibility: EN 12015 (with integrated filter), EN 12016. Other elevator standards: EN 81-20, EN 81-50.		

beyond technology

ADL500 • INPUT DATA

SIZES		1040	1055	1075	2110	2150
ULN - AC Input voltage	VAC	ADL550: Three-phase 230-380-400-460-480 Vac -15\%+10\% ADL530: Three-phase 230-380-400-460-480 Vac 15\%+10\% ADL510: Three-phase 380-400 Vac - $15 \%+10 \%$				
FLN• Input frequency	Hz	$50 / 60 \mathrm{~Hz}, \pm 5 \%$				
Connection to TT and TN Networks		Yes, standard version				
Connection to IT Networks		Yes, dedicated version available upon request ${ }^{(1)}$				
Choke		Optional (DC or AC)				
Overvoltage threshold	VDC	820 Vdc				
Undervoltage threshold	VDC	@ $480 \mathrm{Vac}=470 \mathrm{Vdc}$ @ $460 \mathrm{Vac}=450 \mathrm{Vdc}$ @ $400 \mathrm{Vac}=391 \mathrm{Vdc}$ @ $380 \mathrm{Vac}=371 \mathrm{Vdc}$ @ $230 \mathrm{Vac}=225 \mathrm{Vdc}$				
In•Effective input current (@ In out)						
@ 230 VAC	A	12	17	23	31	42
@ 400 VAC	A	11	16	22	29	40
@ 480 VAC	A	10	15	20	26	37
THD @ I2n With optional external choke, according to EN 12015		< 35%				
No-load consumption (Energy rating): Ready (no-load) ${ }^{(2)}$ consumption "Fan Off" Fan consumption Ready (no-load) ${ }^{(2)}$ consumption "Fan On"	$\begin{aligned} & \text { W } \\ & \text { W } \\ & \text { W } \end{aligned}$	$\begin{gathered} 20 \\ 8 \\ 28 \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 16 \\ & 36 \\ & \hline \end{aligned}$

(1) ADL500 can only operate on IT networks devoid of any faults (between active parts and PE) or in the presence of temporary faults. Therefore an insulation monitor MUST be used to detect and enable prompt removal of any fault condition.
(2) Power consumption when drive is powered from the three-phase mains and is ready to start.

COOLING

SIZES		1040	1055	1075	2110	2150
Pv, Heat dissipation ${ }^{(3)}$ (@ULN=230 ... 460VAC)	W	150	250	350	400	600
Fan capacity $\begin{array}{r}\text { Heat sink } \\ \text { Internal }\end{array}$	$\begin{aligned} & \mathrm{m}^{3} / \mathrm{h} \\ & \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	2×35	2×58	2×58	2×58	2×58
Minimum cabinet opening for cooling	cm^{2}	72	144	144	144	328

[^0]
ADL500• OUTPUT DATA

SIZES		1040	1055	1075	2110	2150
In \cdot Rated output current (fsw = default)						
@ ULN=230 VAC	A	9	13.5	18.5	24.5	32
@ ULN=400 VAC	A	9	13.5	18.5	24.5	32
@ ULN=460 VAC	A	8.1	12.2	16.7	22	28.8
PN mot (Recommended motor power, fsw = default)						
@ ULN=230 VAC	kW	2	3	4	5.5	7.5
@ ULN=400 VAC	kW	4	5.5	7.5	11	15
@ ULN=460 VAC	Hp	5	7.5	10	15	20
Reduction factor						
KV (1)		0.95	0.95	0.95	0.95	0.95
KT ADL550 (2)		1	1	1	1	1
KT ADL510-530 (3)		0.90	0.90	0.90	0.90	0.90
KALT (4)		1.2	1.2	1.2	1.2	1.2
Overload		$\begin{gathered} \text { ADL510, ADL530: } 183 \% \times 10 \mathrm{~s} \\ \text { ADL550: } 183 \% \times 10 \mathrm{~s} / 200 \% \times 2 \mathrm{~s} \end{gathered}$				
Maximum Switching frequency	kHz	10				
U2 - Maximum output voltage		$0.98 \times$ ULN (ULN = AC Input voltage)				
f2-Maximum output frequency	Hz	300				
IGBT braking unit		Standard internal (requires external resistor); braking torque 150\% MAX				

(1) KV: Derating factor for mains voltage at 460Vac and power supply from AFE200.
(2) Kt (ADL550): no derating.
(3) Kt (ADL510/ADL530): Derating factor for ambient temperature of $50^{\circ} \mathrm{C}\left(1 \%\right.$ every ${ }^{\circ} \mathrm{C}$ above $\left.40^{\circ} \mathrm{C}\right)$.
(4) Kalt : Derating factor for installation at altitudes above 1000 meters a.s.I. Value to be applied $=1.2 \%$ each 100 m increase above 1000 m . E.g.: Altitude $2000 \mathrm{~m}, \mathrm{Kalt}=1.2 \%^{*} 10=12 \%$ derating; In derated $=(100-12) \%=88 \%$ In

Derating values in overload condition (ADL5.0-...-4)

In overload conditions the output current DO NOT depends on the output frequency, as shown in the figure below.

Derating values for switching frequency

The switching frequency is modified according to the temperature of the drive (measured on the heat sink), as shown in the figure below.

Ambient temperature reduction factor

ADL500 • DIMENSIONS AND WEIGHTS

SIZE 1

SIZE 2

Sizes	Dimensions: Width x Height x Depth *		Weight	
	mm	inches	kg	Ibs
ADL510/530/550-1...	$162 \times 340 \times 151$	$6.38 \times 13.38 \times 5.9$	5.5	12.1
ADL510/530/550-2...	$162 \times 390 \times 151$	$6.38 \times 15.35 \times 5.94$	7.0	15.4

* Without optional power shield (KIT-POWER-SHIELD).

ADL500 • ORDERING CODES

PRODUCT IDENTIFICATION

\section*{ADL5501 040-XB L-F-4-ENS
 | Emergency Supply module: | [empty] = not included,
 EMS = integrated |
| :---: | :---: |
| Rated voltage: | $4=230-400-480 \mathrm{Vac}$, three-phase |
| EMI Filter: | [empty] = not included $\mathbf{F}=$ integrated |
| Lift application: | L=included |
| Braking unit: | $X=$ not included, $B=$ included |
| Keypad: | X = without integrated keypad |
| Inverter power in kW: | $\begin{aligned} & 040=4 \mathrm{~kW}, 055=5.5 \mathrm{~kW}, 075=7.5 \mathrm{~kW}, \\ & 110=11 \mathrm{~kW}, 150=15 \mathrm{~kW} \end{aligned}$ |
| Mechanical dimensions of the drive: | 1-size 1, 2 = size 2 |
| inverter series: | ADL550, ADL530, ADL510 |

ADL5IO - 4OOVac THREE-PHASE

- Feedback for Incremental Digital + Sinusoidal Encoder

CODE	TYPE	Pn at 400Vac	CONFIGURATION
S9DL5101	ADL510-1040-XBL-4	4 kW	Integrated Braking Module - External EMC Filter
S9DL5102	ADL510-1055-XBL-4	5.5 kW	Integrated Braking Module - External EMC Filter
S9DL5103	ADL510-1075-XBL-4	7.5 kW	Integrated Braking Module - External EMC Filter
S9DL5104	ADL510-2110-XBL-4	11 kW	Integrated Braking Module - External EMC Filter
S9DL5105	ADL510-2150-XBL-4	15 kW	Integrated Braking Module - External EMC Filter
S9DL5121	ADL510-1040-XBL-F-4	4 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5122	ADL510-1055-XBL-F-4	5.5 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5123	ADL510-1075-XBL-F-4	7.5 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5124	ADL510-2110-XBL-F-4	11 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5125	ADL510-2150-XBL-F-4	15 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5141	ADL510-1040-XBL-4-EMS	4 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5142	ADL510-1055-XBL-4-EMS	5.5 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5143	ADL510-1075-XBL-4-EMS	7.5 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5144	ADL510-2110-XBL-4-EMS	11 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5145	ADL510-2150-XBL-4-EMS	15 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5161	ADL510-1040-XBL-F-4-EMS	4 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5162	ADL510-1055-XBL-F-4-EMS	5.5 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5163	ADL510-1075-XBL-F-4-EMS	7.5 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5164	ADL510-2110-XBL-F-4-EMS	11 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5165	ADL510-2150-XBL-F-4-EMS	15 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module

ADL530-230-400-480Vac THREE-PHASE

- Feedback for Multi Encoder

CODE	TYPE	Pn at 400Vac	
S9DL5301	ADL530-1040-XBL-4	4 kW	Integrated Braking Module - External EMC Filter
S9DL5302	ADL530-1055-XBL-4	5.5 kW	Integrated Braking Module - External EMC Filter

CODE	TYPE	Pn at 400Vac	CONFIGURATION
S9DL5303	ADL530-1075-XBL-4	7.5 kW	Integrated Braking Module - External EMC Filter
S9DL5304	ADL530-2110-XBL-4	11 kW	Integrated Braking Module - External EMC Filter
S9DL5305	ADL530-2150-XBL-4	15 kW	Integrated Braking Module - External EMC Filter
S9DL5321	ADL530-1040-XBL-F-4	4 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5322	ADL530-1055-XBL-F-4	5.5 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5323	ADL530-1075-XBL-F-4	7.5 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5324	ADL530-2110-XBL-F-4	11 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5325	ADL530-2150-XBL-F-4	15 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5341	ADL530-1040-XBL-4-EMS	4 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5342	ADL530-1055-XBL-4-EMS	5.5 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5343	ADL530-1075-XBL-4-EMS	7.5 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5344	ADL530-2110-XBL-4-EMS	11 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5345	ADL530-2150-XBL-4-EMS	15 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5361	ADL530-1040-XBL-F-4-EMS	4 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5362	ADL530-1055-XBL-F-4-EMS	5.5 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5363	ADL530-1075-XBL-F-4-EMS	7.5 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5364	ADL530-2110-XBL-F-4-EMS	11 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5365	ADL530-2150-XBL-F-4-EMS	15 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module

ADL550-230-400-48OVac THREE-PHASE

- Feedback for Multi Encoder

CODE	TYPE	Pn at 400Vac	CONFIGURATION
S9DL5501	ADL550-1040-XBL-4	4 kW	Integrated Braking Module - External EMC Filter
S9DL5502	ADL550-1055-XBL-4	5.5 kW	Integrated Braking Module - External EMC Filter
S9DL5503	ADL550-1075-XBL-4	7.5 kW	Integrated Braking Module - External EMC Filter
S9DL5504	ADL550-2110-XBL-4	11 kW	Integrated Braking Module - External EMC Filter
S9DL5505	ADL550-2150-XBL-4	15 kW	Integrated Braking Module - External EMC Filter
S9DL5521	ADL550-1040-XBL-F-4	4 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5522	ADL550-1055-XBL-F-4	5.5 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5523	ADL550-1075-XBL-F-4	7.5 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5524	ADL550-2110-XBL-F-4	11 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5525	ADL550-2150-XBL-F-4	15 kW	Integrated Braking Module - Integrated EMC Filter
S9DL5541	ADL550-1040-XBL-4-EMS	4 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5542	ADL550-1055-XBL-4-EMS	5.5 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5543	ADL550-1075-XBL-4-EMS	7.5 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5544	ADL550-2110-XBL-4-EMS	11 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5545	ADL550-2150-XBL-4-EMS	15 kW	Integrated Braking Module - External EMC Filter - Integrated EMS module
S9DL5561	ADL550-1040-XBL-F-4-EMS	4 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5562	ADL550-1055-XBL-F-4-EMS	5.5 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5563	ADL550-1075-XBL-F-4-EMS	7.5 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5564	ADL550-2110-XBL-F-4-EMS	11 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module
S9DL5565	ADL550-2150-XBL-F-4-EMS	15 kW	Integrated Braking Module - Integrated EMC Filter - Integrated EMS module

OPTIONS

DC INPUT CHOKE - ADL510/530/550-....-4

CODE	TYPE	1040	$\mathbf{1 0 5 5}$	$\mathbf{1 0 7 5}$	$\mathbf{2 1 1 0}$	$\mathbf{2 1 5 0}$
S7AI10	LDC-004	1				
S7A111	LDC-005		1			
S7AA12	LDC-007			1		
S7AI13	LDC-011				1	
S7AI14	LDC-015					1

AC OUTPUT CHOKES - ADL510/530/550-....-4

CODE	TYPE	$\mathbf{1 0 4 0}$	$\mathbf{1 0 5 5}$	$\mathbf{1 0 7 5}$	$\mathbf{2 1 1 0}$	$\mathbf{2 1 5 0}$
S7FG3	LU3-005	1	1	1		
S7FG4	LU3-011				1	
S7FH2	LU3-015					1

EXTERNAL BRAKING RESISTORS - ADL510/530/550-....-4

CODE	TYPE	$\mathbf{1 0 4 0}$	$\mathbf{1 0 5 5}$	$\mathbf{1 0 7 5}$	$\mathbf{2 1 1 0}$	$\mathbf{2 1 5 0}$
S8SZ3	RFPR 750 D 68R	1	1			
S8SZ4	RFPR 1200 D 49R			1		
S8SZ5	RFPR 1900 D 28R				1	1

EXTERNAL BRAKING UNIT - ADL510/530/550-....-4

CODE	TYPE	DESCRIPTION
S9D55	BUy 1020	In = 20A, UL mark
S9D56	BUy 1050	In $=50 \mathrm{~A}$, UL mark
S9D57	BUy 1085	In $=85 \mathrm{~A}$

VARIOUS

CODE	TYPE	DESCRIPTION
S5DL408	EXP-IO1-ADL500	I/O Expansion (4 digital inputs + 2 relays)
S5DL434	EXP-DCP-ADL500	DCP3-DCP4 protocol card (in preparation)
S52969WF	Wi-Fi Drive Link	Wi-Fi plug-in module
S5P11T	KB-ADL500	Programming Keypad
S5P11TK1	KIT REMOTE KB-ADL500 5MT	RJ45 keypad remoting kit, L=5m
S5P11TK2	KIT REMOTE KB-ADL500 10MT	RJ45 keypad remoting kit, L=10m
S72684S12	KIT-POWER-SHIELD S1	Power cable shielding kit for Size 1
S72684S13	KIT-POWER-SHIELD S2	Power cable shielding kit for Size 2

GEFRAN

beyond technology

ADL550-ICS • GENERAL CHARACTERISTICS

MODEL	ADL550-ICS
Control Mode	SSC (Sensorless Scalar Control), Asyn / Syn FOC (Field Oriented Control)
Input Voltage (Output Power)	$3 \times 230 \mathrm{VAC}(2-7.5 \mathrm{~kW}), 3 \times 400 \mathrm{VAC}(4-15 \mathrm{~kW}), 3 \times 480 \mathrm{VAC}(5-20 \mathrm{~kW})$
Motor Type	Asynchronous and Synchronous
Speed Accuracy	$\pm 0.01 \%$ rated motor speed
Analog Inputs	1 (Inverter) + 1 (Car Roof Card)
Digital Inputs	24 (Inverter) + 14 (Car Roof Card) + 1 Enable
Digital outputs	10 (Inverter) + 1 (Car Roof Card)
Fast Freeze Inputs	2
Overload	183\% $\times 10$ / $200 \% \times 2$ s
Max Output Freq.	300 Hz
EMI Filter	Integrated (ADL550-...-F models)
Braking Unit	Integrated
USB Port	Yes
Wi-Fi Module	Optional
Emergency operation	Battery powered (48-96VDC) with integrated EMS module, UPS (1 x 230VAC)
Functions	Maintenance and Inspection mode, Independent Run mode, Operator mode, Return to floor in case of fire, Firefighter control, Automatic return to floor, Return to floor at night, Deceleration at floor, Overload, Earthquake, Anti-vandalism, Call management with full car, Double stop management, Time management, Energy savings.
Number of elevators	Simplex - Duplex - Group (up to 8)
Number of stop	Up to 64
Number of floor	Up to 64
Speed range	Up to $5 \mathrm{~m} / \mathrm{s}$
Car door operation	Up to 3 independent doors
Car display/button panel	Up to 2
Communication \& Wiring system type	CAN bus serial communication (shielded cables) or RS485 serial communication
Call management	Full Selective - Down Selective - Up Selective
Protection level	IP20
Safety features	> Safe torque off SIL3 (Contactorless). > Safe brake test (SBT) $>$ EBC Electronic Brake Control SIL 3 (with external module)
Operating temperature	$50^{\circ} \mathrm{C}$ (without derating)
Altitude	Max 2000 m . (up to 1000 m without derating)
Marks	CE *, cULus, EAC. *Compliant with CE directive on low-voltage equipment (Direttive LVD 2014/35/EU, EMC 2014/30/EU, Lift 2014/33/EU, RoHs 2011/65/EU, Reach 1907/2006)
Standards	Climatic conditions: EN 60721-3-3; Electrical safety: EN 61800-5-1, ASME17.5/CSA B44.1, UL840 pollution degree 2; Energy consumption: ISO 25745; EMC compatibility: EN 12015 (with integrated filter), EN 12016. Other elevator standards: EN 81-20, EN 81-50.
Options	The following options are available to complete the system: > ICS-CR (Integrated Control System Car Roof card) manages the complete operation of the car and sends all the information to the controller via a dedicated CAN bus communication; > ICS-COP (Integrated Control System Car Operator Panel) card that interfaces between control panels and Car Roof Card. It collects commands such as call booking or special commands like fire brigade calls; > ICS-CD (Integrated Control System Car Display) 7 inch TFT car display, shows floor indications, direction, overload, etc. It communicates with the ICS-CPU control system via a dedicated CAN channel (CAN 1) or RS485 > ICS-FD (Integrated Control System Floor Display) a choice of many LCD or TFT displays are available.

GEFRAN

ADL550-ICS • INPUT DATA

SIZES		1040	1055	1075	2110	2150
ULN - AC Input voltage	VAC	Three-phase 230-380-400-460-480 Vac-15\%+10\%				
FLN - Input frequency	Hz	$50 / 60 \mathrm{~Hz}, \pm 5 \%$				
Connection to TT and TN Networks		Yes, standard version				
Connection to IT Networks		Only on request ${ }^{(1)}$, please contact the Gefran Customer Service.				
Choke		Optional (DC or AC)				
Overvoltage threshold	VDC	820 Vdc				
Undervoltage threshold	VDC	@ $480 \mathrm{Vac}=470 \mathrm{Vdc}$ @ $460 \mathrm{Vac}=450 \mathrm{Vdc}$ @ $400 \mathrm{Vac}=391 \mathrm{Vdc}$ @ $380 \mathrm{Vac}=371 \mathrm{Vdc}$ @ $230 \mathrm{Vac}=225 \mathrm{Vdc}$				
In•Effective input current (@In out)						
@ 230 VAC	A	12	17	23	31	42
@ 400 VAC	A	11	16	22	29	40
@ 480 VAC	A	10	15	20	26	37
THD @ I2n With optional external choke, according to EN 12015		< 35\%				
No-load consumption (Energy rating): Ready (no-load) ${ }^{(2)}$ consumption "Fan Off" Fan consumption Ready (no-load) ${ }^{(2)}$ consumption "Fan On"	$\begin{aligned} & \text { W } \\ & \text { W } \\ & \text { W } \end{aligned}$	$\begin{gathered} 20 \\ 8 \\ 28 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 16 \\ & 36 \end{aligned}$

(*) ADL500-ICS can only operate on IT networks devoid of any faults (between active parts and PE) or in the presence of temporary faults.
Therefore an insulation monitor MUST be used to detect and enable prompt removal of any fault condition.
(2) Power consumption when drive is powered from the three-phase mains and is ready to start..

COOLING

SIZES		1040	1055	1075	2110	2150
Pv , Heat dissipation ${ }^{(3)}$ (@ULN=230 ... 460VAC)	W	150	250	350	400	600
Fan capacity $\begin{array}{r}\text { Heat sink } \\ \text { Internal }\end{array}$	$\begin{aligned} & \mathrm{m}^{3} / \mathrm{h} \\ & \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	2×35	2×58	2×58	2×58	2×58
Minimum cabinet opening for cooling	cm^{2}	72	144	144	144	328

(3): values that refer to operation at default switching frequency.

ADL550-ICS • OUTPUT DATA

SIZES		1040	1055	1075	2110	2150
IN \cdot Rated output current (fsw = default)						
@ ULN=230 VAC	A	9	13.5	18.5	24.5	32
@ ULN=400 VAC	A	9	13.5	18.5	24.5	32
@ ULN=460 VAC	A	8.1	12.2	16.7	22	28.8
Pn mot (Recommended motor power, fsw = default)						
@ ULN=230 VAC	kW	2	3	4	5.5	7.5
@ ULN=400 VAC	kW	4	5.5	7.5	11	15
@ ULN=460 VAC	Hp	5	7.5	10	15	20
Reduction factor						
KV (1)		0.95	0.95	0.95	0.95	0.95
KT (2)		1	1	1	1	1
KALT (3)		1.2	1.2	1.2	1.2	1.2
Overload		$183 \% \times 10$ s / $200 \% \times 2 \mathrm{~s}$				
Maximum Switching frequency	kHz	10				
U2 - Maximum output voltage		$0.98 \times$ ULN (ULN = AC Input voltage)				
f2-Maximum output frequency	Hz	300				
IGBT braking unit		Standard internal (requires external resistor); braking torque 150\% MAX				

(l) Kv : Derating factor for mains voltage at 460Vac and power supply from AFE200.
(2) Kt: no derating.
(3) Kalt: Derating factor for installation at altitudes above 1000 meters a.s.l. Value to be applied $=1.2 \%$ each 100 m increase above 1000 m . E.g.: Altitude $2000 \mathrm{~m}, \mathrm{Kalt}=1.2 \%{ }^{*} 10=12 \%$ derating; In derated $=(100-12) \%=88 \%$ In

Derating values in overload condition

In overload conditions the output current DO NOT depends on the output frequency, as shown in the figure below.

Derating values for switching frequency

The switching frequency is modified according to the temperature of the drive (measured on the heat sink), as shown in the figure below.

Ambient temperature reduction factor

GEFRAN

ADL550-ICS • DIMENSIONS AND WEIGHTS

SIZE 1

SIZE 2

Sizes	Dimensions: Width \times Height \times Depth *		Weight	
	mm	inches	kg	l lbs
ADL550-ICS-1...	$162 \times 340 \times 151$	$6.38 \times 13.38 \times 5.9$	5.5	12.1
ADL550-ICS-2...	$162 \times 390 \times 151$	$6.38 \times 15.35 \times 5.94$	7.0	15.4

[^1]
ADL55O-ICS • ORDERING CODES

PRODUCT IDENTIFICATION

ADL550-ICS 1 040-KB L-F-4-EMS

Emergency Supply module:	[empty] = not included, EMS = integrated
Rated voltage:	$4=230-400-480 \mathrm{Vac}$, three-phase
EMI Filter:	[empty] = not included $\mathbf{F}=$ integrated
Lift application:	Leincluded
Braking unit:	$X=$ not included, $B=$ included
Keypad:	K = integrated Keypad 1-line $\times 4$-character alphanumerical LED display
Inverter power in kW:	$\begin{aligned} & 040=4 \mathrm{~kW}, 055=5.5 \mathrm{~kW}, 075=7.5 \mathrm{~kW}, \\ & 110=11 \mathrm{~kW}, 150=15 \mathrm{~kW} \end{aligned}$
Mechanical dimensions of t	1- size 1, 2 = size 2
Inverter series ADL550-ICS	

ADL550-ICS -230-400-480Vac THREE-PHASE

CODE	TYPE	Pn at 400Vac	
S9DLI5501	ADL550-ICS-1040-KBL-4	4 kW	Integrated Lift Control card - Integrated Braking Module - External EMC Filter
S9DLI5502	ADL550-ICS-1055-KBL-4	5.5 kW	Integrated Lift Control card - Integrated Braking Module - External EMC Filter
S9DLI5503	ADL550-ICS-1075-KBL-4	7.5 kW	Integrated Lift Control card - Integrated Braking Module - External EMC Filter
S9DLI5504	ADL550-ICS-2110-KBL-4	11 kW	Integrated Lift Control card - Integrated Braking Module - External EMC Filter
S9DLI5505	ADL550-ICS-2150-KBL-4	15 kW	Integrated Lift Control card - Integrated Braking Module - External EMC Filter
S9DLI5521	ADL550-ICS-1040-KBL-F-4	4 kW	Integrated Lift Control card - Integrated Braking Module - Integrated EMC Filter
S9DLI5522	ADL550-ICS-1055-KBL-F-4	5.5 kW	Integrated Lift Control card - Integrated Braking Module - Integrated EMC Filter
S9DLI5523	ADL550-ICS-1075-KBL-F-4	7.5 kW	Integrated Lift Control card - Integrated Braking Module - Integrated EMC Filter
S9DLI5524	ADL550-ICS-2110-KBL-F-4	11 kW	Integrated Lift Control card - Integrated Braking Module - Integrated EMC Filter
S9DLI5525	ADL550-ICS-2150-KBL-F-4	15 kW	Integrated Lift Control card - Integrated Braking Module - Integrated EMC Filter
S9DLI5541	ADL550-ICS-1040-KBL-4-EMS	4 kW	Integrated Lift Control card - Integrated Braking and EMS modules - External EMC Filter
S9DLI5542	ADL550-ICS-1055-KBL-4-EMS	5.5 kW	Integrated Lift Control card - Integrated Braking and EMS modules - External EMC Filter
S9DLI5543	ADL550-ICS-1075-KBL-4-EMS	7.5 kW	Integrated Lift Control card - Integrated Braking and EMS modules - External EMC Filter
S9DLI5544	ADL550-ICS-2110-KBL-4-EMS	11 kW	Integrated Lift Control card - Integrated Braking and EMS modules - External EMC Filter
S9DLI5545	ADL550-ICS-2150-KBL-4-EMS	15 kW	Integrated Lift Control card - Integrated Braking and EMS modules - External EMC Filter
S9DLI5561	ADL550-ICS-1040-KBL-F-4-EMS	4 kW	Integrated Lift Control card - Integrated Braking Module, EMC Filter and EMS module
S9DLI5562	ADL550-ICS-1055-KBL-F-4-EMS	5.5 kW	Integrated Lift Control card - Integrated Braking Module, EMC Filter and EMS module
S9DLI5563	ADL550-ICS-1075-KBL-F-4-EMS	7.5 kW	Integrated Lift Control card - Integrated Braking Module, EMC Filter and EMS module
S9DLI5564	ADL550-ICS-2110-KBL-F-4-EMS	11 kW	Integrated Lift Control card - Integrated Braking Module, EMC Filter and EMS module
S9DLI5565	ADL550-ICS-2150-KBL-F-4-EMS	15 kW	Integrated Lift Control card - Integrated Braking Module, EMC Filter and EMS module

GEFRAN

beyond technology

OPTIONS

DC INPUT CHOKE - ADL550-ICS-....-4

CODE	TYPE	1040	$\mathbf{1 0 5 5}$	$\mathbf{1 0 7 5}$	$\mathbf{2 1 1 0}$	$\mathbf{2 1 5 0}$
S7A110	LDC-004	1				
S7A111	LDC-005		1			
S7A112	LDC-007			1		
S7A113	LDC-011				1	
S7AI14	LDC-015					1

AC OUTPUT CHOKES - ADL550-ICS-....-4

CODE	TYPE	1040	$\mathbf{1 0 5 5}$	$\mathbf{1 0 7 5}$	$\mathbf{2 1 1 0}$	$\mathbf{2 1 5 0}$
S7FG3	LU3-005	1				
S7FG3	LU3-005		1			
S7FG3	LU3-005			1		
S7FG4	LU3-011				1	
S7FH2	LU3-015					1

EXTERNAL BRAKING RESISTORS - ADL550-ICS-....-4

CODE	TYPE	$\mathbf{1 0 4 0}$	$\mathbf{1 0 5 5}$	$\mathbf{1 0 7 5}$	$\mathbf{2 1 1 0}$	$\mathbf{2 1 5 0}$
S8SZ3	RFPR 750 D 68R	1	1			
S8SZ4	RFPR 1200 D 49R			1		
S8SZ5	RFPR 1900 D 28R				1	1

EXTERNAL BRAKING UNIT - ADL550-ICS-....-4

CODE	TYPE	DESCRIPTION
S9D55	BUy 1020	In = 20A, UL mark
S9D56	BUy 1050	$\ln =50 \mathrm{~A}$, UL mark
S9D57	BUy 1085	$\ln =85 \mathrm{~A}$

VARIOUS

CODE	TYPE	DESCRIPTION
S52969WF	Wi-Fi Drive Link	Wi-Fi plug-in module
S5P11T	KB-ADL500	Programming Keypad
S5P11TK1	KIT REMOTE KB-ADL500 5MT	RJ45 keypad remoting kit, L=5m
S5P11TK2	KIT REMOTE KB-ADL500 10MT	RJ45 keypad remoting kit, L=10m
S72684S12	KIT-POWER-SHIELD S1	Power cable shielding kit for Size 1
S72684S13	KIT-POWER-SHIELD S2	Power cable shielding kit for Size 2

CARDS, PANELS AND DISPLAY

CODE	TYPE	DESCRIPTION
On request	ICS-CR	Integrated Control System Car Roof card. The ICS-CR card manages complete cabin operation, sending all information to the controller via a dedicated CAN bus communication.
On request	ICS-COP	Integrated Control System Car Operator Panel Card that interfaces between button panels and Car Roof Card (ICS-CR).
On request	ICS-CD	Integrated Control System Car Display Cabin Display: 7 inch TFT. Communication with ICS-CPU control system via dedi- cated CAN channel (CAN 1) or RS485.
On request	ICS-FD	Integrated Control System Floor Display This display is positioned in the floor. It is possible to select the display based on the wished technology (e.g. LCD, TFT). The Communication with the ICS-CPU can be via CAN or RS485.
On request	Push buttons and covers	This are optional parts, Gefran can provide these parts, in alternative the customers are free to connect their selected parts.

Floor Display

Push buttons

ADL500 and ADL550-ICS • DRIVE PROGRAMMMING

GF_Liftouch - WEBAPP

Mount Wifi Drive Link Module on ADL530 or ADL550.

Detect Wifi Drive Link network within your Wi-Fi networks on your mobile device.
Enter the password and press «connect».

Fully responsive WebApp, compatible with all major browsers on smartphones, tablets and PCs, and with any operating system.

Ease to use

Always keep track of the drive status, but with the intuitiveness of a common mobile app.

Internet security
Secure communications guaranteed by 4 different password protected access profiles.

CONNECT EASILY YOUR MOBILE TO YOUR ADL500
In less than one minute

GF_DriveLabs - CONFIGURATOR

Enhancement of Gefran PC configurator features in the same "family feeling" programming.

Digital Oscilloscope
Built-in synchronous sampling Softscope with lms period, integrated with the configuration software.

Simple use with 4 wizards and function diagrams.

THE ADVANTAGES OF REGENERATION

LOWER OPERATING COSTS

Regenerative units in lift systems provide significant benefits in terms of Building Automation and Energy Efficiency.
Where justified by traffic profiles, a system with regenerative units provides both economic and technical advantages.
The operating principle is simple: when the empty car goes up or the full car goes down, the mechanical system generates potential energy that the electric motor, "pulled" by the car load, converts into electrical energy.

CLEAN ENERGY

The regenerative unit transforms the electrical energy generated by the motor into clean energy, namely with reduced harmonic distortion (THD $<4 \%$), making it reusable by other electrical equipment in the building.

MORE EFFICIENT BUILDINGS

In addition to reducing installation space (because braking resistors are no longer needed), this solution reduces the building's energy consumption, most of which is attributable to air conditioning systems, refrigeration, pump systems, and lifts.
Regenerative systems can be used with external Active Front End (AFE) solutions (coupled with the ADL500 series).

[^2]

[^0]: (3) Values that refer to operation at default switching frequency.

[^1]: *Senza supporto metallico opzionale (KIT-POWER-SHIELD).

[^2]: GEFRAN DRIVES AND MOTION S.R.L. reserves the right to make changes and variations to products, data, dimensions at any time without the obligation of prior notice. The data indicated are provided for the sole purpose of describing the product and must not be considered as legally binding characteristics.

